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Abstract. We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully

nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The

electric �eld is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following:

(1) High harmonic resonances (n > 2) signi�cantly enhance geodesic-acoustic mode (GAM) damping at

high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST

q-scans and experimental measurements of the scaling of the GAM amplitude with edge q95 in the absence

of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM.

(2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of

outgoing waves, its radial scale is set by the ion temperature pro�le, and ion temperature inhomogeneity

is necessary for GAM radial propagation. (3) The development of the neoclassical electric �eld evolves

through di�erent phases of relaxation, including GAMs, their radial propagation, and their long-time

collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-o� layer region in divertor

geometry are substantial non-Maxwellian ion distributions and ow characteristics qualitatively like those

observed in experiments.

1. Introduction

Geodesic acoustic modes (GAMs) have been clearly identi�ed experimentally in tokamak
and stellarator plasmas and play an important role in edge transport barrier formation.
Both the GAM and zonal ows (ZF) are driven by turbulence, however the GAM can be
damped both by wave-particle resonances and collisions, while gyrokinetic ZFs are only
damped by the collisional friction between trapped and circulating ions. The turbulence
uctuation levels and transport are in turn regulated by the GAM and ZFs via the time-
varying ExB ow shear de-correlation, which impact on the L-H transition. This work
presents several important advances in our understanding of GAMs and zonal ow, and
radial electric �eld of a neoclassical plasma.

1This work was performed for the U.S. Department of Energy under contract under Contract DE-
AC52-07NA27344, Grant No. DE-FG02-04ER54739 at UCSD, and grants DE-FG03-95ER54309 at gen-
eral Atomics and DE-AC02-76CHO3073 at PPPL.
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2. A heuristic kinetic model for the evolution of radial electric �eld in toroidal

plasmas

In the long wavelength limit k?�� � 1, the self-consistent electric �eld is computed from
the full-f gyrokinetic Poisson equation for multiple species [1, 2]
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It can be shown that by taking the time derivative and ux-surface averaging Eq. (1),
assuming the electrostatic potential to be constant within a ux surface, taking the 0th-
moment of the conservative form of gyrokientic equation, and �nally integrating Eq. (1)
over the radial coordinate (valid for a local analysis), the radial electric �eld evolution
obeys the radial Amp�ere-Maxwell law averaged over a closed-ux surface 
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where  is the poloidal magnetic ux, h� � �i represents the ux surface average, and J

is the sum of all the current in the plasma, including the gyro-viscosity current, and the
ion guiding-center current due to its orbital dynamics (the corresponding electron current
is typically neglected in tokamak geometry, because it is smaller than the ion current
by a factor of the mass ratio me=mi). The quasi-steady-state radial electric �eld Er on
a magnetic surface is obtained from the condition hj i = 0. We note the mathematical
equivalence of the two approaches for solving the radial electric �eld of a neoclassical
plasma from Eq. (1) and Eq. (2) in the large-aspect-ratio limit.

By taking the time derivative of Eq. (2) and assuming F� ' FM� + Æf� in the integral,
where FM� is the local Maxwellian distribution function (for simplicity assuming isother-
mality; the inclusion of an ion temperature gradient leads to more complicated neoclassical
sources, but with precisely the same �nal conclusion except for the appearance of Eneo

r ),
we obtain a dynamical equation for the radial electric �eld, 
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where the �rst of group terms on the left side represents the displacement current and ion
polarization currents, the second term gives the GAM frequency, the third term yields
the GAM collisionless damping, and the fourth term produces the collisional damping
(C(Æf) is the linearized ion collision operator). In the quasi-steady state with a drifting
Maxwellian distribution Æf� / vkFM�, the last term on the right side furnishes the source
for the standard neoclassical relationship between Er from the second term and the parallel
ow Uk from streaming in the third term on the left side. Here Er = E �r . The solution
to this equation describes relaxation of the radial electric �eld and, heuristically, can be
written in the form:

Er(t) = Eneo
r +

h
EHR
r + EGAM

r e�(i!GAM+GAM )t
i
e�ct: (4)



where (see Sec.3.) !GAM = (
p
7 + 4�=2)(vT i=R) is the GAM frequency [3], � = Te=Ti

for a single ion species and R is the major radius, where GAM is the collisionless GAM
damping [5, 6, 4, 7, 8], ERH

r (t =1)=Er(0) ' (1 + 1:6q2=
p
�)�1 is the Rosenbluth-Hinton

residual zonal ow [9], Eneo
r = (Ti=e)(@ lnN�=@r) describes the equilibrium value of the

radial electric �eld which follows the standard neoclassical relationship between Er and
Uk [10], and c ' �ii is the collisional damping rate of the zonal ow [11, 12]. From
the discussion above it is clear that the GAM is essentially an ion mode, where the ion
polarization current is responding to charge separation caused by radial ion grad-B drifts
as delineated in the �rst two terms of Eq. (3).

3. 4D TEMPEST Simulation Results in Circular Geometry

In this section we will discuss the GAM collisionless damping mechanism, the radial prop-
agation and the \quasi-steady state conditions" on the standard neoclassical transport
time scale. We develop a relaxation method to eÆciently solve the gyrokinetic Poisson
equation to remove the gyrosheath singularity, to correctly yield the standard neoclassi-
cal relation between Er and Uk, and simultaneously to obtain the poloidal variation of
the electrostatic potential. With the fully nolinear (full-f) continuum code TEMPEST we
compute the radial particle and the heat ux, the evolution of the electric �eld through
di�erent phases of relaxation (development of GAMs, their radial propagation, and their
long-time collisional decay) in a circular-geometry edge plasma [4, 2].

3.1 Collisionless damping of Geodesic-Acoustic Modes

In our 4D simulations (with @=@� = 0 in the 5D code) for a homogeneous plasma, the
initial ion distribution is a local Maxwellian. The charge is radially separated by an initial
sinusoidal perturbation of the ion density with no variation within the ux surfaces Æni =
Æn0 sin(2�r=L ). The electron model is a fully nonlinear Boltzmann ne = hni( ; �; t =
0)i exp(e�=Te)=hexp(e�=Te)i, where hi represents the ux-surface average. This choice of
coeÆcient for the Boltzmann electron model means that there is no cross-�eld electron
transport. Both the radial and poloidal boundary conditions are periodic. We consider a
simple circular cross-section tokamak with the magnetic �eld B = B�e� + B�e�, where �
and � are the toroidal and poloidal angles of a torus, respectively, with � = 0 chosen to be
at the outboard midplane of the torus. The inverse aspect ratio � = r=R0 where r is the
minor radius is not assumed to be small. The major radius is given by R = R0(1+ � cos �)
and B� = B0R0=R. The equilibrium parameters used are B0 = 15T, R0 = 1:71m, and
Ti = Te = 3keV with deuterium ions. We take B�(r) to be radially uniform to justify
the radial periodic boundary conditions. The large B0 is used for the global simulations
with Æi=L � 1, where Æi = q�i is the drift-orbit size and L is the radial box size. The

resolution is n = 32; n� = 64; nE = 30 and n� = 60. �s = cs=
ci; cs =
q
2Te=Mi; vthi =q

2Ti=Mi; Te = Ti; � = r=R = 0:2: GAM and !GAM are measured in units of vthi=R0.

The damping rate of the GAM vs q for a �xed � = 0:2 and kr�i ' 0:1375 is plotted
in Fig. 1a). The curves come from the theory of Gao et al [7], where a series of Bessel
functions for �nite orbit width and plasma-dispersion-function-like integrals along the
Landau contour for higher-harmonic resonances are included. The dispersion relation is
solved by a direct numerical-integration technique retaining many harmonics. The dotted



curve omits the �nite-orbit-width (FOW) e�ect; the dot-dashed curve includes additional
damping at the 2nd resonance as done by Sugama and Watanabe [6] and Gao et al [7];
the dashed curve is the theory retaining additional damping up to the 4th resonance;
the solid curve is the theory retaining additional damping up to the 10th resonance;
The black points are TEMPEST simulation results. Also plotted are results from a 5D
gyrokinetic continuum code GYRO (purple squares) [13], and a gyrokinetic PIC code
XGC (red diamonds) [14]. The error bar from TEMPEST simulations represents the
uncertainty in �tting to a single decaying exponential. The FOW e�ect dramatically
enhances the GAM damping rate at q > 2 by inducing multiple resonances in phase space.
For the same parameters, the damping rate is almost zero if the FOW e�ect is ignored.
Furthermore, Fig. 1a) clearly shows that higher-harmonic resonances at vresk ' !GqR0=n
with n > 2 become important when q > 3:5. The higher-harmonic resonances are included
in the simulations, and comparisons between theory and simulation show that the theory
retaining up to the 2nd resonance is a good approximation only for q < 3:5. Our theoretical
treatment, retaining up to 4th resonance, is required for 3:5 < q < 9. A corresponding
analytical expression for the damping rate is systematically derived, including higher-
order harmonics of the ion transit frequency and valid over a broad range kr�it � 1 and
q � 1 [8]. For the same parameters used in Fig. 1a), the analytical formula predicts
damping rates in very good agreement with the numerical and simulation results in its
validity regime: q > (kr�it)

�1=2 � 3.
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FIG. 1: a) GAM damping rate G vs q for � = 0:2 in homogeneous plasmas. The curves come
from Gao et al theory [7] with and without the �nite-orbit-width e�ect, the black points are
TEMPEST simulation results, the purple squares are GYRO simulation results, and the red
diamonds are XGC simulation results. b) GAM damping rate and integrated GAM amplitude
(square-root of intensity I) versus q95 within one discharge near r=a = 0:9 during the current
ramp up (acquired at 100ms intervals) from Ref. [15] in DIII-D edge plasmas. Here GAM (q =

5:5) = 3:2� 103/s.

3.2 Radial Propagation of Geodesic-Acoustic Modes

TEMPEST simulations were carried out for an inhomogeneous plasma with density and
temperature pro�les chosen to model the DIII-D edge pedestal: magnetic �eld Bt =
1:5T;R0 = 1:71m; q = 3 and " = 0:3. The ion guiding-center density and temperature
pro�les are initialized as a hyperbolic tangent (tanh) function of radius centered around
the middle of the simulation domain. In this simulation a Lorentz collision model is
used. An initial pulse-like perturbation of the ion density is given with the peak centered
around the middle of the pedestal. A series of TEMPEST simulations were validated
against experimental measurements from a q-scan. The enhanced GAM damping at high
q is found again, which is necessary to explain experimental measurements of the scaling



of the GAM amplitude with edge q95 [15]. A simple model for the BES intensity I can be
written as dI=dt = Sturb�GAM(q)I, where Sturb is the source term representing the e�ects
of the \external" forces induced by the small-scale turbulence. If the source Sturb is a weak
function of q, then for steady-state conditions a strong drop in GAM as q increases should
correlate with an increase in GAM intensity I, as shown in Fig. 1b). However over that
same range of q variation in Fig. 1a) as the BES measurement, there is very little change
in the damping rate. The di�erence is mainly due to the real DIII-D parameters used
and particularly the pedestal-like temperature pro�les which turn the GAM oscillation
into radial propagation in the form of outgoing waves and set the radial scale of the
GAM wave-like radial structure in our TEMPEST simulation. This radial scale, in turn,
determines the strength of the higher harmonic resonant damping. The enhanced GAM
damping may also help to explain the similar q-scaling of the GAM amplitude, observed
using Doppler reectometry in ASDEX Upgrade [16].

TEMPEST simulations show that the kinetic GAMs exist in the edge for steep plasma
gradients in the form of outgoing waves [18, 17], as shown in Fig. 3; and the ion temper-
ature inhomogeneity is necessary for GAM radial propagation [2]. The linear relationship
of the peak of the contour of the perturbed ion density Æni=Ni0 as a function of radial posi-
tion and time indicates that the group velocity and phase velocity are the same. A simple
estimate shows that its radial wavelength is a function of the ion temperature gradient
scale length L

�1=3
T i , and its radial propagation velocity is on the order of the radial ion

grad-B drift. From the simple estimate based on an inverted linear ion temperature pro�le,

we obtain vpr / (
p
7 + 4�=4)f(q)(LT i=�i)

1=3(�i=R)vT i where f(q) =
q
1 + 46=49q2. The

TEMPEST simulations yield the coeÆcient and the following relationship is obtained
vpr ' 0:76(

p
7 + 4�=4)f(q)(LT i=�i)

1=3(�i=R)vT i. The experimental BES measurements
show a very coherent GAM in DIII-D; it has a well-de�ned frequency in a given plasma
condition/time, along with a well-de�ned kr (typically near 1 cm

�1 at about f=14-16 kHz).
It appears to propagate radially outward at the outboard midplane. The measured and
calculated radial propagation velocity are vDIII�Dpr � 2�f=kr ' (8:79 � 10:00) � 102m/s
and vSimpr ' 8:69� 102m/s with LT i ' 10�i and � = 1, showing agreement to within 15%.
The probe experimental measurements on tokamak HL-2A also show that the localized
GAM packet is observed to propagate outward in the radial direction with nearly the
same phase and group velocity, which is consistent with TEMPEST simulations [19].
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FIG. 2: a) Contour plot of the perturbed ion density Æni=Ni0 = (Ni �Ni0)=Ni0 as a function of
radial position and time. Here L is the radial box size. b) Poloidal variation of potential versus
poloidal angle.



3.3 Radial electric �eld of neoclassical plasmas

Traditionally the radial electric �eld of a neoclassical plasma is evaluated according to the
radial Ampere-Maxwell's law averaged over a closed-ux surface as described in Sect. 2.
However, this method is incomplete in the sense that the poloidal electric �eld cannot be
solved simultaneously in a consistent way. This is an unsatisfactory situation since the
potential varies signi�cantly in the edge plasma around the X-point and in the divertor
leg region due to contact with divertor plates. The gyrokinetic Poisson equation is seldom
used because the small coeÆcient in front of the Poisson operator associated with the gyro-
radius makes the equation nearly singular due to a gyrosheath at radial boundaries when
�s � LP � LB. Here, LP = jr(lnP )j�1 is the characteristic gradient scale length for the
plasma pro�le, and LB = jr(lnB)j�1 the characteristic length for the magnetic �eld. We
develop a relaxation method to eÆciently solve the gyrokinetic Poisson equation to remove
the singularity and to correctly yield the standard neoclassical relationship between Er
and Uk. In a special case with a at ion temperature pro�le and Lorentz collisions, TEM-
PEST simulations show that the electrostatic potential relaxes to a steady state, and a
Boltzmann relation is reached [2], (Zie=Ti)@�=@ + @ lnPi=@ = 0, as expected from the
theory for the case of zero temperature gradient [20]. The steady-state Uk is very small
due to the speci�ed Maxwellian radial boundary condition with zero ow velocity.

In a general case with an ion temperature gradient, starting from an initial state with
Uk � 0, the equilibrium-scale radial electric �eld is quickly established on the order of
a fractional of a collision time after the relaxation of GAM oscillations and zonal ow,
and obeys the standard neoclassical relationship between Er and Uk, while Uk is not
yet fully evolved. The further development of Uk on the transport time scale requires
careful formulation of the gyrokinetic equation and gyrokinetic Poisson equation, including
sources and sinks, as well as higher order in �i=LB corrections to the �rst-order gyrokinetic
equation. Using the relaxation approach to solve the gyrokinetic Poisson equation we are
able to obtain the standard neoclassical relationship between Er and Uk [2], and the
�rst-order (poloidal) correction to the equilibrium-scale radial electric �eld. The poloidal
variation of the potential has been analytically estimated to vary as [21]
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�i�p
2LT i

sin �: Æ� = (�� h�i) (5)

where �i� is the ion gyro-radius at the poloidal magnetic �eld, and C is a coeÆcient:
C ' 1:81��i in the banana regime and C ' p

2=2 in the plateau regime, where ��i =
��3=2�ii

p
2qR0=vT i. The comparison of the poloidal variation of potential is shown in

Fig. 2b) for the analytical estimate and the TEMPEST simulation, which is in qualitative
agreement with analytical predictions from Eq. (5) that Æ�( ; �) is found to vary sinu-
soidally with a magnitude lower than the Hinton-Rosenbluth prediction. A similar trend
is found in a newly developed Eulerian code NEO for numerical studies of neoclassical
transport [22]. The lack of a quantitative agreement is possibly due to the following [22]:
(1) for the banana-regime prediction the Hinton-Rosenbluth derivation develops a singular
component due to inadequate treatment of the trapped/passing particle boundary layer
and thus only the Fourier sine coeÆcient, which is �nite, is reported in the �nal analytical
result. (2) the �nite � e�ects are neglected in the analytical theory.



4. 4D TEMPEST Simulation of Plasmas ows in divertor geometry

Additional results are obtained with 4D TEMPEST simulations of plasma transport in
single-null tokamak geometry. One set of simulations studies the e�ect of high-energy drift
orbits from the pedestal region that can extend across the separatrix into the scrape-o�
layer (SOL). The sign of the ion parallel velocity determines if the drift orbit is radially
inward or outward. Near the outer midplane this kinetic e�ect results in substantial mean
ion ow of the hot ions toward the inner divertor plate for the ion gradient-B drift toward
the X-point. For DIII-D H-mode discharge 96333, we simulate this e�ect by taking the
ion distribution boundary condition at the top of the pedestal to be a 1 keV Maxwellian
with density of 5� 1019m�3, and then allow TEMPEST to evolve the distribution to the
separatrix and into the SOL. An energy-dependent Lorentz collision operator is used. In
the outer-midplane SOL, the ion distribution function shows a pronounced high-energy
tail giving a mean parallel velocity near sonic values toward the inner divertor, and this
mean ow reverses sign at the inner midplane as expected; coupling of this ow to the
colder SOL plasma needs to be modeled. Figure 3a shows the outer midplane pro�les of
ion density and temperature for this case. In addition, the kinetic simulation shows that
the ux of ions lost at the divertor plates is nearly as large on the private-ux side of
the separatrix as on the SOL side. Inclusion of a 1 kV electrostatic potential that peaks
on the separatrix and decays to zero at each radial boundary (core interface, private-ux
wall, and SOL wall) results in a radial shift of the plasma (and thus hot-ion ux) toward
the private-ux side on the outer divertor and toward the SOL side on the inner divertor
as shown in Fig. 3b.
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FIG. 3: a) Radial pro�les of ion density and temperature for TEMPEST simulation of DIII-
D single-null divertor; b) Final pro�les of ion density and temperature at the inner and outer
divertor plates for the case with 1 kV potential.

5. Summary

The newly discovered higher harmonic resonances signi�cantly enhance GAM damping at
high-q (n > 2), are necessary to explain the damping observed in q-scans of our gyrokinetic
simulations, and help to explain experimental measurements of the scaling of the GAM
amplitude with edge q. The kinetic GAM exists in the edge for steep plasma gradients in
the form of radially outgoing waves as experimentally measured, and the ion temperature
inhomogeneity is necessary for GAM radial propagation. The radial propagation velocity
in simulation agrees with theoretical estimates and experiments.
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